Enantioselective Friedel–Crafts Alkylation Reactions of 3-Substituted Indoles with Electron-Deficient Alkenes

Jian-Quan Weng, Ren-Jie Fan, Qiao-Man Deng, Ren-Rong Liu, Jian-Rong Gao, and Yi-Xia Jia*

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Supporting Information

ABSTRACT: Highly enantioselective Friedel–Crafts C2alkylation reactions of 3-substituted indoles with α , β unsaturated esters and nitroalkenes were developed using chiral Lewis acids as catalysts, which afforded chiral indole derivatives bearing C2-benzylic stereogenic centers in good to excellent yields (up to 99%) and enantioselectivities (up to 96% ee).

E nantioselective Friedel–Crafts alkylation reaction repre-sents one of the most significant approaches to the synthesis of chiral aromatic compounds bearing benzylic stereogenic centers.¹ In this research field, indoles have attracted considerable attention as popular aromatic substrates, and many efficient reactions have been developed to synthesize chiral indole derivatives.² However, most of the these transformations have predominantly focused on the C3functionalization of indoles due to the higher nucleophilicity of the C3 position.³ In contrast, the asymmetric Friedel–Crafts alkylation reactions occurring at the less reactive C2 position to deliver chiral indoles bearing C2-benzylic stereocenters have remained rarely exploited but are important structural motifs that frequently appear in numerous biologically active molecules and natural products.⁴ Therefore, it is highly desirable to develop efficient an asymmetric Friedel-Crafts C2-alkylation reaction of indoles. For this purpose, the asymmetric Pictet-Spengler reaction of indoles has been well-established, while it was intrinsically limited to the intramolecular versions.⁵ An indirect strategy has also been developed by incorporating asymmetric Friedel-Crafts alkylation of 4,7-dihydroindoles and a subsequent oxidation.⁶ In comparison, the direct enantioselective C2-alkylation of 3substituted indoles provides a promising access to C2functionalized chiral indoles, while it still remains a challenge. To date, only β , γ -unsaturated α -ketoesters^{7a-c} and β , γ unsaturated α -ketimino esters^{7d} were applied as alkylating agents for the C2-alkylation of 3-substituted indoles. Herein, we report the Friedel-Crafts C2-alkylation reactions of 3substituted indoles with α_{β} -unsaturated esters and nitroalkenes as alkylating agents, which obtained C2-alkylated indoles in excellent enantioselectivities using chiral Lewis acid catalysts (Scheme 1).

Initially, we chose diethyl 2-benzylidenemalonate 2 as an alkylating agent to react with 3-methylindole 1a. No reaction took place, and compound 2 remained inactive in the presence

Scheme 1. Enantioselective Friedel-Crafts C2-Alkylation of 3-Substituted Indoles

of a range of Lewis acid catalysts. Therefore, more active diethyl 2-(2-oxo-2-phenylethylidene)malonate 3a was synthesized by introducing an additional carbonyl group and tested in the reaction with 1a (Table 1). To our delight, the reaction between 3-methylindole 1a and compound 3a occurred smoothly in CH₂Cl₂ to afford the desired C2-alkylated product 4aa in good yield by using $Cu(OTf)_2$ as a catalyst (entry 1). Moderate ee value and good yield were obtained when a chiral bisoxazoline ligand L1 was introduced (entry 2). The reaction in THF led to excellent yield, while the enantioselectivity decreased to 21% (entry 3). Both yield and ee were decreased for the reaction in toluene (entry 4). Subsequent examination of chiral ligand revealed that (S)-Pr-bisoxazoline L2 was the best choice, and product 4aa was isolated in 99% yield and 93% ee (entry 5). Comparable results were obtained for ligand L4 (entry 7), while moderate yield and ee value were afforded for ligand L3 bearing a ^tBu substituent (entry 6). Examination of other Lewis acids in the presence of ligand L2 disclosed that moderate enantioselectivities were obtained for Ni(OTf)₂ and $Zn(OTf)_2$ in spite of the observed excellent yields (entries 8 and 9). $Mg(OTf)_2$ was also a suitable catalyst, but the yield and enantioselectivity were both lower (entry 10). Gratifyingly, both the yield and ee remained excellent when the reaction was performed at a lower catalyst loading (entry 11).

Received: January 19, 2016 Published: March 9, 2016 Table 1. Condition Optimization for the Reaction between 1a and 3a^a

^aConditions: 1a (0.3 mmol), 3a (0.2 mmol), 10 mol % of catalyst, and 12 mol % of L* in the solvent indicated (2.0 mL) at room temperature for 12 h. ^bIsolated yield. ^cDetermined by chiral HPLC. ^dNo ligand. ^eCu(OTf)₂ (1 mol %) and L2 (1.2 mol %).

$$\begin{array}{ccc} Ph & \begin{array}{c} CO_2Et \\ CO_2Et \end{array} & \begin{array}{c} Ph & \begin{array}{c} CO_2Et \\ O & CO_2Et \end{array} \\ \begin{array}{c} 2 & \begin{array}{c} 3a \end{array} \end{array}$$

With the optimal reaction conditions in hand, we investigated the scope of this reaction. A range of α_{β} unsaturated esters (3a-3k) bearing different aryl substituents were tested. As shown in Table 2, all of the reactions of $\alpha_{,\beta}$ -

P1

unsaturated esters (3a-3h) bearing either electron-donating or electron-withdrawing substituents on the phenyl ring occurred smoothly to afford the desired products in excellent yields. Enantioselectivities were generally excellent, while the halosubstituents (F, Cl, and Br) resulted in relatively lower ee values (entries 2-4). In addition, 2-naphthyl and heteroaryl substrates (3i-3k) were also successfully reacted with 3methylindole 1a to furnish the corresponding products 4ai-4ak in excellent yields and good to excellent enantioselectivities (entries 9-11). The substituent effect of 3-substituted indole was then examined. Excellent yields and good enantioselectivities were achieved for 3-ethyl-, 3-isopropyl-, 3-benzyl-, and 3phenyl-substituted indoles (1b-1e); however, the reactivity of 1c, 1d, and 1e was relatively lower, and a higher catalyst loading was required to ensure excellent yields (entries 12-15). Moreover, good results were obtained for 3-methylindoles (1f-1h) bearing either electron-donating or electron-withdrawing substituents on the phenyl ring (entries 16-18).

The absolute configuration of bromo-product 4ab was determined to be S based on its single-crystal X-ray structure. As shown in Scheme 2, a proposed model for asymmetric

Scheme 2. Proposed Asymmetric Induction Model and the Absolute Configuration of 4ab

 R^1 O

Table 2. Substrate Scope for the Reaction of $\alpha_{,\beta}$ -Unsaturated Esters 3^{*a*}

	R ² + Ar	$\begin{array}{c} O CO_2Et \\ CO_2Et \\ CO_2Et \end{array} \xrightarrow{\begin{array}{c} 1 \text{ mol }\% \text{ Cu}(OTf)_2 \\ 1.2 \text{ mol }\% \text{ L2} \\ DCM \text{ rt } 12 \text{ h} \end{array}}$	Ar CO ₂ E	Et	
	1 1	3	H CO ₂ Et		
entry	1	Ar	4	yield (%) ^b	ee (%) ^c
1	$1a (R^1 = Me, R^2 = H)$	Ph (3a)	4aa	99	93
2	$1a (R^1 = Me, R^2 = H)$	$4-Br-C_{6}H_{4}$ (3b)	4ab	92	81(<i>S</i>)
3	$1a (R^1 = Me, R^2 = H)$	$4-F-C_{6}H_{4}$ (3c)	4ac	95	88
4	$1a (R^1 = Me, R^2 = H)$	$2-Cl-C_{6}H_{4}$ (3d)	4ad	98	55
5	$1a (R^1 = Me, R^2 = H)$	4-MeO- $C_{6}H_{4}$ (3e)	4ae	98	93
6	$1a (R^1 = Me, R^2 = H)$	4-Me- C_6H_4 (3f)	4af	96	92
7	$1a (R^1 = Me, R^2 = H)$	2-Me- C_6H_4 (3g)	4ag	96	92
8	$1a (R^1 = Me, R^2 = H)$	3,4-(MeO) ₂ -C ₆ H ₃ (3h)	4ah	97	90
9	$1a (R^1 = Me, R^2 = H)$	2-naphthyl (3i)	4ai	98	90
10	$1a (R^1 = Me, R^2 = H)$	2-thienyl (3j)	4aj	98	91
11	$1a (R^1 = Me, R^2 = H)$	2-furyl (3k)	4ak	97	86
12	1b $(R^1 = Et, R^2 = H)$	Ph (3a)	4ba	93	91
13 ^d	1c $(R^1 = {}^iPr, R^2 = H)$	Ph (3a)	4ca	99	85
14 ^d	$1d (R^1 = Bn, R^2 = H)$	Ph (3a)	4da	95	79
15 ^d	1e $(R^1 = Ph, R^2 = H)$	Ph (3a)	4ea	99	88
16	$1f(R^1 = Me, R^2 = 5-MeO)$	Ph (3a)	4fa	99	84
17	$1g (R^1 = Me, R^2 = 6-Cl)$	Ph (3a)	4ga	98	82
18	1h $(R^1 = Me, R^2 = 7-Me)$	Ph (3a)	4ha	99	86

"Reactions conditions: 1 (0.3 mmol), 3 (0.2 mmol), Cu(OTf)₂ (1 mol %), and L2 (1.2 mol %) in CH₂Cl₂ (2.0 mL) at room temperature for 12 h. ^bIsolated yield. ^cDetermined by chiral HPLC. ^dCu(OTf)₂ (5 mol %) and L2 (6 mol %).

induction is depicted. Substrate **3b** is activated by the chiral catalyst through 1,5-coordination of two carbonyl oxygen atoms of ester to Cu(II), and the *Re* face approach of 3-methylindole is favorable to result in the *S* configuration of product **4ab**.

Due to the above success, nitroalkene, a popular alkylating agent for the asymmetric C3-alkylation of indoles,⁸ was also investigated in the reaction with 3-substituted indole. Therefore, 3-methylindole 1a and β -nitrostyrene 5a were chosen as model substrates for condition optimization. The reaction was smoothly promoted by the complex of Cu(OTf)₂ and chiral bisoxazoline ligand L5, leading to the desired product 6aa in 73% yield and 50% ee in toluene at 80 °C for 12 h (Table 3,

Table 3. Optimization of the Reaction between 1a and $5a^{a}$

1	N + Ph H a 5a	NO ₂ s	10 mol% Cat. 12 mol% L* olvent, 80 °C 12 h		Ph NO ₂
Ph Ph Ph	N N Ph L5	Ph	L6	Ph PhPh	N O Ph
entry	cat.	L*	solvent	yield (%) ^b	ee (%) ^c
1	$Cu(OTf)_2$	L5	toluene	73	50
2	Ni(OTf) ₂	L5	toluene	65	31
3	$Ni(ClO_4)_2 \cdot 6H_2O$	L5	toluene	92	5
4	$Zn(OTf)_2$	L5	toluene	97	50
5	$Zn(ClO_4)_2 \cdot 6H_2O$	L5	toluene	88	29
6	$Zn(OTf)_2$	L1	toluene	91	11
7	$Zn(OTf)_2$	L2	toluene	85	9
8	$Zn(OTf)_2$	L3	toluene	81	5
9	$Zn(OTf)_2$	L4	toluene	93	11
10	$Zn(OTf)_2$	L6	toluene	98	28
11	$Zn(OTf)_2$	L7	toluene	98	92
12	$Zn(OTf)_2$	L7	CH ₂ ClCH ₂ Cl	43	58
13	$Zn(OTf)_2$	L7	THF	nr ^d	
14 ^e	$Zn(OTf)_2$	L7	toluene	97	92
15 [†]	$Zn(OTf)_2$	L7	toluene	91	90

^{*a*}Reactions conditions: **1a** (0.6 mmol), **5a** (0.4 mmol), 10 mol % of catalyst, and 12 mol % of L* in the indicated solvent (4.0 mL) at 80 °C for 12 h. ^{*b*}Isolated yield. ^cDetermined by chiral HPLC. ^{*d*}No reaction. ^{*e*}Zn(OTf)₂ (5 mol %) and L7 (6 mol %). ^{*f*}Zn(OTf)₂ (1 mol %) and L7 (1.2 mol %).

entry 1). $Zn(OTf)_2$ showed a higher activity, resulting in excellent product yield and the same ee value (entry 4). Ni(OTf)_2, Ni(ClO₄)_2·6H₂O, and Zn(ClO₄)_2·6H₂O led to inferior results (entries 2, 3, and 5), although nickel salts have been found to be efficient catalysts for the asymmetric Friedel–Crafts reaction of indole with β , β -disubstituted nitroalkenes.^{8a,d} When Du's bisoxazoline L7⁹ was used as a ligand, the enantioselectivity was remarkably improved to 92% (entry 11); however, poor enantioselectivities were obtained for other ligands (L1–L4 and L6 in entries 6–10). Subsequent solvent screening showed that no reaction occurred in THF, and inferior results were obtained in 1,2-dichloroethane (entries 12 and 13). The catalyst loading could be decreased to 5 and 1 mol %, although yield and enantioselectivity were both slightly decreased for the latter (entries 14 and 15).

We then investigated the scope of 3-substituted indole and nitroalkene. A range of nitrostyrenes bearing different substituents on the phenyl ring were reacted with 3methylindole 1a under the optimal conditions. Yields and enantioselectivities were both excellent for all of the reactions (Table 4, entries 2-8). The same good results were also obtained for 1-naphthyl and 2-thienyl nitroalkenes (entries 9 and 10). Note that the reaction of a cinnamaldehyde-derived nitroalkene substrate 5k took place smoothly to afford the product 6ak in 72% yield and 90% ee (entry 11). The substituent effect of 3-substituted indole was then examined. Good results were observed for the reactions of 3-ethyl and 3phenyl indoles (1b and 1e) with nitrostyrene 5a, although the yield for product 6ea was slightly lower (entries 12 and 13). Other indoles (1f, 1h, 1i) bearing additional substituents at the C5-C7 position were also tested, and the reactions with 5a produced the corresponding adducts (6fa, 6ha, and 6ia) in excellent yields and enantioselectivities (entries 14-16). The absolute configuration of product 6ae was determined to be R on the basis of the X-ray diffraction of its single-crystal structure. According to the asymmetric induction model proposed by Du and co-workers,^{5b} the nucleophilic attack of 3-methylindole 1a to nitroalkene 5e was favored in the Re face and thus resulted in the R configuration of the product.

In conclusion, we have developed highly enantioselective Friedel–Crafts C2-alkylation reactions of 3-substituted indoles with α , β -unsaturated esters and nitroalkenes as alkylating agents by using Cu- or Zn-based chiral Lewis acids as catalysts. The reaction provides a straightforward access to the synthesis of chiral inoles bearing C2-benzylic stereogenic centers.

EXPERIMENTAL SECTION

General Information. Column chromatography was carried out on silica gel (200–300 mesh). ¹H NMR spectra were recorded at 500 MHz in CDCl₃, and ¹³C NMR spectra were recorded at 125 MHz in CDCl₃. Melting points were determined on a microscopic apparatus and were uncorrected. All new products were further characterized by HRMS obtained on a TOF LC/MS mass spectrometer equipped with an ESI source; copies of their ¹H NMR and ¹³C NMR spectra are provided. Enantiomeric excesses (ee) were determined by chiral highperformance liquid chromatography (chiral HPLC). Optical rotation values were measured with instruments operating at $\lambda = 589$ nm, corresponding to the sodium D line at the temperatures indicated. α_{β} -Unsaturated ester 3 was also prepared according to the known methods.^{10,11}

Diethyl 2-(2-(4-Bromophenyl)-2-oxoethylidene)malonate (**3b**): Yellow solid; yield 29% (1.2 g); mp = 50–52 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86–7.83 (m, 2H), 7.79 (s, 1H), 7.68–7.66 (m, 2H), 4.36 (q, *J* = 7.0 Hz, 2H), 4.31 (q, *J* = 7.0 Hz, 2H), 1.37 (t, *J* = 7.0 Hz, 3H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 188.2, 164.2, 162.7, 136.8, 134.9, 132.3, 130.2, 129.6, 62.5, 62.0, 14.0, 13.7; HRMS *m*/*z* (ESI+) calcd for C₁₅H₁₆BrO₅ ([M + H]⁺) 355.0176, found 355.0174.

Diethyl 2-(2-(4-Fluorophenyl)-2-oxoethylidene)malonate (**3c**): Yellow solid; yield 34% (0.8 g); mp = 51–53 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05–7.99 (m, 2H), 7.81 (s, 1H), 7.23–7.16 (m, 2H), 4.36 (q, *J* = 7.0 Hz, 2H), 4.31 (q, *J* = 7.0 Hz, 2H), 1.37 (t, *J* = 7.0 Hz, 3H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 187.6, 166.3 (d, *J* = 257.2 Hz), 164.1, 162.7, 136.5, 135.1, 132.5 (d, *J* = 2.4 Hz), 131.5 (d, *J* = 10.2 Hz), 116.1 (d, *J* = 21.3 Hz), 62.3, 61.8, 13.9, 13.6; HRMS *m*/*z* (ESI+) calcd for C₁₅H₁₆FO₅ ([M + H]⁺) 295.0976, found 295.0977.

Diethyl 2-(2-(2-Chlorophenyl)-2-oxoethylidene)malonate (**3d**): Yellow sticky oil; yield 60% (1.1 g); ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.48 (dd, J = 9.0, 1.5 Hz, 2H), 7.40–7.36 (m, 1H), 4.36–4.27 (m, 4H), 1.36–1.28 (m, 6H); ¹³C -2

 R^1

$H_{R^3} \rightarrow NO_2 \xrightarrow{\text{6 mol% L7}} R^3$							
	1 1	5 12-40 h	✓ N H 6				
entry	1	\mathbb{R}^3	6	yield (%) ^b	ee (%) ^c		
1	$1a (R^1 = Me, R^2 = H)$	Ph (5a)	6aa	97	92		
2	$1a (R^1 = Me, R^2 = H)$	$4-Me-C_{6}H_{4}$ (5b)	6ab	97	93		
3	$la (R^1 = Me, R^2 = H)$	4-MeO- C_6H_4 (5c)	6ac	99	90		
4	$1a (R^1 = Me, R^2 = H)$	$4-Cl-C_{6}H_{4}$ (5d)	6ad	95	93		
5	$1a (R^1 = Me, R^2 = H)$	$4-Br-C_{6}H_{4}$ (5e)	6ae	99	91(R)		
6	$1a (R^1 = Me, R^2 = H)$	$3-MeO-C_6H_4$ (5f)	6af	97	93		
7	$1a (R^1 = Me, R^2 = H)$	2-MeO- C_6H_4 (5g)	6ag	99	91		
8	$1a (R^1 = Me, R^2 = H)$	3,4-(MeO) ₂ -C ₆ H ₃ (5h)	6ah	99	92		
9	$1a (R^1 = Me, R^2 = H)$	1-naphthyl (5i)	6ai	98	91		
10	$1a (R^1 = Me, R^2 = H)$	2-thienyl (5j)	6aj	95	92		
11	$1a (R^1 = Me, R^2 = H)$	PhCh=CH (5k)	6ak	72	90		
12	1b $(R^1 = Et, R^2 = H)$	Ph (5a)	6ba	96	94		
13	1e $(R^1 = Ph, R^2 = H)$	Ph (5a)	6ea	86	96		
14	1f $(R^1 = Me, R^2 = 5-MeO)$	Ph (5a)	6fa	92	91		
15	1h $(R^1 = Me, R^2 = 7-Me)$	Ph (5a)	6ha	99	95		
16	1i $(R^1 = Me, R^2 = 6-F)$	Ph (5a)	6ia	97	92		

E mall/ Zn/OTf)

 R^1

^aReactions conditions: 1 (0.6 mmol), 5 (0.4 mmol), Zn(OTf)₂ (5 mol %), and L7 (6 mol %) in toluene (4.0 mL) at 80 °C for 12 h. ^bIsolated yield. ^cDetermined by chiral HPLC.

NMR (125 MHz, CDCl₃) δ 189.2, 163.3, 161.8, 135.8, 135.6, 134.5, 132.3, 131.6, 129.8, 129.7, 126.1, 61.4, 61.0, 13.0, 12.8; HRMS m/z (ESI+) calcd for C₁₅H₁₆ClO₅ ([M + H]⁺) 311.0681, found 311.0684.

Diethyl 2-(2-Oxo-2-(o-tolyl)ethylidene)malonate (**3g**): Yellow sticky oil; yield 38% (1.2 g); ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 6.0 Hz, 2H), 7.35–7.30 (m, 1H), 7.19 (dd, J = 12.5, 7.5 Hz, 2H), 4.23 (q, J = 7.0 Hz, 2H), 4.13 (q, J = 7.0 Hz, 2H), 2.45 (s, 3H), 1.24 (t, J = 7.0 Hz, 3H), 1.14 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 191.8, 163.9, 162.6, 139.1, 138.0, 135.5, 135.1, 132.3, 131.7, 129.8, 125.5, 61.9, 61.4, 20.7, 13.6, 13.3; HRMS m/z (ESI+) calcd for C₁₆H₁₉O₅ ([M + H]⁺) 291.1227, found 291.1225.

Diethyl 2-(2-(Naphthalen-2-yl)-2-oxoethylidene)malonate (**3i**): Yellow solid; yield 50% (0.6 g); mp = 51–52 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.05 (dd, J = 9.0, 2.0 Hz, 1H), 8.02 (s, 1H), 8.00 (s, 1H), 7.93 (dd, J = 19.5, 8.5 Hz, 2H), 7.66–7.64 (m, 1H), 7.62–7.58 (m, 1H), 4.40 (q, J = 7.0 Hz, 2H), 4.31 (q, J = 7.0 Hz, 2H), 1.40 (t, J = 7.0 Hz, 3H), 1.27 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 188.9, 164.4, 162.9, 136.4, 136.0, 135.5, 133.5, 132.4, 131.2, 129.7, 129.1, 128.9, 127.8, 127.1, 123.6, 62.4, 61.9, 14.0, 13.7; HRMS m/z (ESI+) calcd for C₁₉H₁₉O₅ ([M + H]⁺) 327.1227, found 327.1226.

Diethyl 2-(2-(Furan-2-yl)-2-oxoethylidene)malonate (**3k**): Yellow solid; yield 34% (1.7 g); mp = 52-53 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.70 (d, *J* = 1.0 Hz, 1H), 7.39 (d, *J* = 4.0 Hz, 1H), 6.64 (dd, *J* = 3.5, 1.5 Hz, 1H), 4.40 (q, *J* = 7.0 Hz, 2H), 4.35 (q, *J* = 7.0 Hz, 2H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.36 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 164.6, 162.6, 152.5, 147.9, 137.5, 131.8, 119.6, 113.0, 62.3, 61.8, 13.8, 13.7; HRMS *m*/*z* (ESI+) calcd for C₁₃H₁₅O₆ ([M + H]⁺) 267.0863, found 267.0861.

General Procedure for the Friedel–Crafts Reaction. To a dried Schlenk tube were added $M(OTf)_2$ (1 or 5 mol %) and chiral ligand (1.2 or 6 mol %) under N₂, and the solvent (2.0 or 4.0 mL) was then introduced via syringe. The resulting mixture was stirred at room temperature for 1 h, after which 3-substituted indole (0.3 or 0.6 mmol) and α,β -unsaturated ester (0.2 mmol) or nitroalkene (0.4 mmol) were added. The resulting mixture was stirred at the indicated temperature until the reaction was completed (monitored by TLC). The solvent was then removed under vacuum, and the residue was purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v) to afford the products.

(S)-Diethyl 2-(1-(3-Methyl-1H-indol-2-yl)-2-oxo-2-phenylethyl)malonate (**4aa**): Yellow solid; yield 99% (80.7 mg); mp = 121– 122 °C; $[\alpha]_D^{25} = -189.4$ (*c* 1.0, CH₂Cl₂); 93% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; $t_{major} = 27.1$ min, $t_{minor} = 34.3$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 8.05–8.02 (m, 2H), 7.55–7.52 (m, 1H), 7.49–7.40 (m, 3H), 7.26 (d, J = 8.0 Hz, 1H), 7.16–7.12 (m, 1H), 7.07–7.04 (m, 1H), 5.69 (d, J = 11.5 Hz, 1H), 4.56 (d, J = 11.5 Hz, 1H), 4.26–4.12 (m, 2H), 4.01–3.91 (m, 2H), 2.38 (s, 3H), 1.21 (t, J =7.0 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.5, 167.9, 167.8, 136.4, 135.9, 133.5, 128.9, 128.7, 126.1, 122.4, 119.2, 118.7, 110.8, 110.7, 62.0, 61.6, 54.7, 44.4, 13.8, 13.5, 8.6; HRMS m/z (ESI+) calcd for C₂₄H₂₆NO₅ ([M + H]⁺) 408.1805, found 408.1813.

(*S*)-Diethyl 2-(2-(4-Bromophenyl)-1-(3-methyl-1H-indol-2-yl)-2oxoethyl)malonate (**4ab**): Yellow solid; yield 92% (89.5 mg); mp = 116–117 °C; $[\alpha]_D^{25} = -94.2$ (*c* 1.0, CH₂Cl₂); 81% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; $t_{major} = 19.5$ min, $t_{minor} = 49.6$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (*s*, 1H), 7.88 (d, *J* = 8.5 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.07 (t, *J* = 7.5 Hz, 1H), 5.61 (d, *J* = 11.0 Hz, 1H), 4.53 (d, *J* = 11.0 Hz, 1H), 4.25–4.13 (m, 2H), 4.01–3.93 (m, 2H), 2.36 (*s*, 3H), 1.23 (t, *J* = 7.0 Hz, 3H), 0.92 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.6, 167.9, 167.6, 136.4, 134.7, 132.0, 130.1, 128.9, 128.9, 125.7, 122.6, 119.4, 118.8, 111.0, 110.8, 62.1, 61.7, 54.6, 44.4, 13.9, 13.6, 8.6; HRMS *m*/*z* (ESI+) calcd for C₂₄H₂₅BrNO₅ ([M + H]⁺) 486.0911, found 486.0911.

(S)-Diethyl 2-(2-(4-Fluorophenyl)-1-(3-methyl-1H-indol-2-yl)-2oxoethyl)malonate (**4ac**): Yellow solid; yield 95% (80.8 mg); mp = 102–103 °C; $[\alpha]_D^{25} = -142.5$ (c 1.0, CH₂Cl₂); 88% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; $t_{major} = 18.0$ min, $t_{minor} = 40.9$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.10–8.03 (m, 3H), 7.48 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.17–7.05 (m, 4H), 5.63 (d, J = 11.5Hz, 1H), 4.54 (d, J = 11.5 Hz, 1H), 4.25–4.14 (m, 2H), 4.01–3.92 (m, 2H), 2.37 (s, 3H), 1.22 (t, J = 7.0 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.0, 167.9, 167.7, 166.0 (d, J =256.1 Hz), 136.4, 132.3 (d, J = 2.7 Hz), 131.4 (d, J = 9.4 Hz), 128.8, 125.9, 122.5, 119.3, 118.7, 115.9 (d, J = 22.0 Hz), 110.8, 110.8, 62.1,

The Journal of Organic Chemistry

61.7, 54.6, 44.3, 13.9, 13.6, 8.6; HRMS m/z (ESI+) calcd for $C_{24}H_{25}FNO_5$ ([M + H]⁺) 426.1711, found 426.1716.

(5)-Diethyl 2-(2-(2-chlorophenyl)-1-(3-methyl-1H-indol-2-yl)-2oxoethyl)malonate (**4ad**): Yellow solid; yield 98% (86.6 mg); mp = 123-124 °C; $[\alpha]_D^{25} = -55.3$ (c 1.0, CH₂Cl₂); 55% ee [Lux 5u Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/ 20, 1.0 mL/min, 254 nm; $t_{minor} = 5.4$ min, $t_{major} = 8.7$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.30 (s, 1H), 7.73-7.70 (m, 1H), 7.45 (d, J =8.0 Hz, 1H), 7.34-7.31 (m, 2H), 7.28-7.25 (m, 2H), 7.17-7.14 (m, 1H), 7.08-7.04 (m, 1H), 5.50 (d, J = 10.5 Hz, 1H), 4.51 (d, J = 10.5Hz, 1H), 4.25-4.20 (m, 2H), 4.03-3.97 (m, 2H), 2.19 (s, 3H), 1.25 (t, J = 7.0 Hz, 3H), 0.95 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.1, 167.9, 167.8, 137.3, 136.4, 132.0, 131.9, 130.8, 129.2, 128.8, 126.6, 125.0, 122.4, 119.2, 118.7, 111.8, 110.9, 62.1, 61.7, 53.8, 48.4, 13.9, 13.6, 8.4; HRMS *m*/*z* (ESI+) calcd for C₂₄H₂₅ClNO₅ ([M + H]⁺) 442.1416, found 442.1422.

(5)-Diethyl 2-(2-(4-Methoxyphenyl)-1-(3-methyl-1H-indol-2-yl)-2oxoethyl)malonate (**4ae**): Yellow solid; yield 98% (85.8 mg); mp = 128-129 °C; $[\alpha]_D^{25} = -97.3$ (*c* 1.0, CH₂Cl₂); 93% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; $t_{major} = 26.3$ min, $t_{minor} = 64.5$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 8.05–8.00 (m, 2H), 7.47 (d, J = 7.5 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.15–7.11 (m, 1H), 7.08– 7.03 (m, 1H), 6.93–6.88 (m, 2H), 5.65 (d, J = 11.0 Hz, 1H), 4.54 (d, J = 11.0 Hz, 1H), 4.23–4.12 (m, 2H), 4.00–3.91 (m, 2H), 3.84 (s, 3H), 2.38 (s, 3H), 1.21 (t, J = 7.0 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.9, 167.9, 167.9, 164.0, 136.2, 131.1, 128.9, 128.7, 126.7, 122.3, 119.2, 118.6, 113.9, 110.8, 110.3, 61.9, 61.6, 55.5, 54.7, 43.9, 13.9, 13.6, 8.6; HRMS *m*/*z* (ESI+) calcd for C₂₅H₂₈NO₆ ([M + H]⁺) 438.1911, found 438.1912.

(5)-Diethyl 2-(1-(3-Methyl-1H-indol-2-yl)-2-oxo-2-(p-tolyl)ethyl)malonate (**4af**): Yellow solid; yield 96% (80.9 mg); mp = 126–127 °C; $[\alpha]_D^{25} = -103.1$ (c 1.0, CH₂Cl₂); 92% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/ min, 254 nm; $t_{major} = 23.2$ min, $t_{minor} = 47.9$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.94 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.0Hz, 1H), 7.24 (t, J = 10.5 Hz, 3H), 7.15–7.11 (m, 1H), 7.05 (t, J = 8.0Hz, 1H), 5.67 (d, J = 11.0 Hz, 1H), 4.55 (d, J = 11.0 Hz, 1H), 4.23– 4.13 (m, 2H), 3.99–3.93 (m, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 1.21 (t, J = 7.0 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.1, 167.9, 167.8, 144.6, 136.3, 133.3, 129.4, 128.9, 128.8, 126.4, 122.3, 119.2, 118.7, 110.8, 110.6, 62.0, 61.6, 54.6, 44.1, 21.6, 13.9, 13.6, 8.6; HRMS m/z (ESI+) calcd for C₂₅H₂₈NO₅ ([M + H]⁺) 422.1962, found 422.1966.

(5)-Diethyl 2-(1-(3-Methyl-1H-indol-2-yl)-2-oxo-2-(o-tolyl)ethyl)malonate (**4ag**): Yellow solid; yield 96% (80.9 mg); mp = 139– 140 °C; $[\alpha]_D^{25} = -204.1$ (*c* 1.0, CH₂Cl₂); 92% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; $t_{major} = 25.3$ min, $t_{minor} = 60.0$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 7.88 (d, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 7.5 Hz, 1H), 7.33 (td, *J* = 7.5, 1.0 Hz, 1H), 7.27 (s, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.15 (td, *J* = 8.5, 1.5 Hz, 2H), 7.08–7.05 (m, 1H), 5.51 (d, *J* = 11.0 Hz, 1H), 4.54 (d, *J* = 11.0 Hz, 1H), 4.26–4.19 (m, 2H), 4.00– 3.92 (m, 2H), 2.34 (s, 3H), 2.25 (s, 3H), 1.25 (t, *J* = 7.0 Hz, 3H), 0.92 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 200.6, 168.1, 167.7, 138.9, 137.1, 136.3, 131.7, 131.6, 128.9, 128.5, 126.0, 125.6, 122.4, 119.2, 118.7, 111.0, 110.8, 62.1, 61.6, 54.5, 47.3, 20.7, 14.0, 13.6, 8.4; HRMS *m*/z (ESI+) calcd for C₂₅H₂₈NO₅ ([M + H]⁺) 422.1962, found 422.1967.

(S)-Diethyl 2-(2-(3,4-Dimethoxyphenyl)-1-(3-methyl-1H-indol-2yl)-2-oxoethyl)malonate (**4ah**): Yellow solid; yield 97% (90.7 mg); mp = 169–170 °C; $[\alpha]_D^{25} = -100.3$ (*c* 1.0, CH₂Cl₂); 90% ee [Lux Su Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/ 20, 1.0 mL/min, 254 nm; $t_{minor} = 10.0$ min, $t_{major} = 18.8$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (*s*, 1H), 7.75 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.15–7.12 (m, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 8.5 Hz, 1H), 5.66 (d, *J* = 11.5 Hz, 1H), 4.55 (d, *J* = 11.5 Hz, 1H), 4.23– 4.15 (m, 2H), 4.00–3.92 (m, 2H), 3.92 (s, 3H), 3.89 (s, 3H), 2.40 (s, 3H), 1.22 (t, *J* = 7.0 Hz, 3H), 0.91 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.8, 167.9, 167.9, 153.8, 149.0, 136.3, 128.8, 128.7, 126.8, 123.5, 122.3, 119.1, 118.6, 110.9, 110.8, 110.2, 110.1, 61.9, 61.5, 56.0, 55.7, 54.6, 43.9, 13.8, 13.5, 8.6; HRMS *m*/*z* (ESI+) calcd for C₂₆H₃₀NO₇ ([M + H]⁺) 468.2017, found 468.2027.

(S)-Diethyl 2-(1-(3-Methyl-1H-indol-2-yl)-2-(naphthalen-2-yl)-2oxoethyl)malonate (4ai): Yellow solid; yield 98% (89.7 mg); mp = 140–141 °C; $[\alpha]_{D}^{25}$ = +13.2 (c 1.0, CH₂Cl₂); 90% ee [Lux 5u Cellulose-2 column (25 cm \times 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/ 20, 1.0 mL/min, 254 nm; $t_{\text{minor}} = 6.2 \text{ min}$, $t_{\text{major}} = 10.6 \text{ min}$]; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.61 \text{ (s, 1H)}, 8.16 \text{ (s, 1H)}, 8.05 \text{ (dd, } J = 9.0, 1.5$ Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.85 (dd, J = 13.5, 9.0 Hz, 2H), 7.59 (t, J = 7.0 Hz, 1H), 7.54 (t, J = 7.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H),7.25 (d, J = 8.0 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 5.86 (d, J = 11.0 Hz, 1H), 4.62 (d, J = 11.0 Hz, 1H), 4.24-4.13 (m, 2H), 4.05-3.92 (m, 2H), 2.46 (s, 3H), 1.21 (t, J = 7.0 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.5, 167.9, 167.9, 136.3, 135.8, 133.0, 132.4, 130.7, 129.7, 128.9, 128.8, 128.6, 127.7, 126.8, 126.3, 124.1, 122.4, 119.3, 118.7, 110.8, 110.7, 62.1, 61.7, 54.7, 44.4, 13.9, 13.6, 8.7; HRMS m/z (ESI+) calcd for C₂₈H₂₈NO₅ $([M + H]^+)$ 458.1962, found 458.1969.

(S)-Diethyl 2-(1-(3-Methyl-1H-indol-2-yl)-2-0x0-2-(thiophen-2-yl)ethyl)malonate (4aj): Yellow solid; yield 98% (81.0 mg); mp = 107–108 °C; $[\alpha]_D^{25} = -196.3$ (c 1.0, CH₂Cl₂); 91% ee [Lux Su Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; $t_{minor} = 5.9$ min, $t_{major} = 7.5$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.19 (s, 1H), 7.86 (dd, *J* = 4.0, 1.0 Hz, 1H), 7.64 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.26 (s, 1H), 7.17–7.14 (m, 1H), 7.11–7.05 (m, 2H), 5.48 (d, *J* = 11.5 Hz, 1H), 4.52 (d, *J* = 11.5 Hz, 1H), 4.24–4.15 (m, 2H), 4.00–3.93 (m, 2H), 2.39 (s, 3H), 1.21 (t, *J* = 7.0 Hz, 3H), 0.92 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.8, 167.7, 167.6, 142.3, 136.3, 134.8, 133.2, 128.8, 128.4, 126.4, 122.5, 119.3, 118.8, 110.9, 110.9, 62.1, 61.7, 54.3, 45.6, 13.9, 13.6, 8.7; HRMS *m*/z (ESI+) calcd for C₂₂H₂₄NO₅S ([M + H]⁺) 414.1370, found 414.1363.

(S)-Diethyl 2-(2-(Furan-2-yl)-1-(3-methyl-1H-indol-2-yl)-2oxoethyl)malonate (**4ak**): Yellow solid; yield 97% (77.1 mg); mp = 119–120 °C; $[\alpha]_D^{25} = -121.5$ (*c* 1.0, CH₂Cl₂); 86% ee [Lux 5u Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/ 20, 1.0 mL/min, 254 nm; $t_{minor} = 6.6$ min, $t_{major} = 10.1$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.19 (s, 1H), 7.60 (d, J = 1.0 Hz, 1H), 7.49 (d, J =8.0 Hz, 1H), 7.29 (d, J = 3.5 Hz, 1H), 7.26 (s, 1H), 7.17–7.13 (m, 1H), 7.10–7.04 (m, 1H), 6.52 (dd, J = 4.0, 2.0 Hz, 1H), 5.51 (d, J =11.5 Hz, 1H), 4.52 (d, J = 11.5 Hz, 1H), 4.25–4.13 (m, 2H), 4.01– 3.93 (m, 2H), 2.38 (s, 3H), 1.22 (t, J = 7.0 Hz, 3H), 0.93 (t, J = 7.0Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 185.4, 167.8, 167.5, 151.5, 147.2, 136.3, 128.7, 125.9, 122.4, 119.2, 118.9, 118.7, 112.7, 111.3, 110.9, 62.1, 61.6, 53.8, 44.3, 13.8, 13.6, 8.5; HRMS *m*/*z* (ESI+) calcd for C₂₂H₂₄NO₆ ([M + H]⁺) 398.1598, found 398.1602.

(S)-Diethyl 2-(1-(3-Ethyl-1H-indol-2-yl)-2-oxo-2-phenylethyl)malonate (**4ba**): Yellow solid; yield 93% (78.4 mg); mp = 121– 122 °C; $[\alpha]_D^{25} = -172.6$ (*c* 1.0, CH₂Cl₂); 91% ee [Lux Su Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/ min, 254 nm; $t_{minor} = 5.3$ min, $t_{major} = 7.1$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (*s*, 1H), 8.07–8.03 (m, 2H), 7.56–7.50 (m, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.27 (*s*, 1H), 7.17–7.11 (m, 1H), 7.07–7.02 (m, 1H), 5.71 (d, *J* = 11.5 Hz, 1H), 4.58 (d, *J* = 11.5 Hz, 1H), 4.27–4.12 (m, 2H), 4.01–3.90 (m, 2H), 2.92–2.79 (m, 2H), 1.26–1.19 (m, 6H), 0.91 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.9, 167.9, 167.8, 136.6, 136.0, 133.6, 128.8, 128.6, 128.0, 125.2, 122.4, 119.2, 119.2, 117.6, 110.9, 62.1, 61.6, 55.0, 44.1, 17.6, 14.9, 13.9, 13.6; HRMS *m*/*z* (ESI+) calcd for C₂₅H₂₈NO₅ ([M + H]⁺) 422.1962, found 422.1964.

(*S*)-Diethyl 2-(1-(3-Isopropyl-1H-indol-2-yl)-2-oxo-2-phenylethyl)malonate (**4ca**): Yellow solid; yield 99% (86.2 mg); mp = 175–176 °C; $[\alpha]_D^{25} = -106.7$ (*c* 1.0, CH₂Cl₂); 85% ee [Lux Su Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/ min, 254 nm; $t_{\text{minor}} = 4.7$ min, $t_{\text{major}} = 6.4$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 7.0 Hz, 3H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.26 (s, 1H), 7.15–7.09 (m, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 5.75 (d, *J* = 11.5 Hz, 1H), 4.58 (d, *J* = 11.5 Hz, 1H), 4.25–4.13 (m, 2H), 4.00–3.96 (m, 2H), 3.40 (dt, J = 14.0, 7.0 Hz, 1H), 1.44 (d, J = 7.0 Hz, 3H), 1.37 (d, J = 7.0 Hz, 3H), 1.22 (t, J = 7.0 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.8, 167.9, 167.8, 137.0, 135.8, 133.6, 128.8, 128.6, 126.4, 124.3, 122.0, 121.5, 120.7, 118.8, 111.1, 62.0, 61.6, 54.9, 44.2, 26.3, 22.8, 22.5, 13.9, 13.6; HRMS m/z (ESI+) calcd for C₂₆H₃₀NO₅ ([M + H]⁺) 436.2118, found 436.2119.

(S)-Diethyl 2-(1-(3-Benzyl-1H-indol-2-yl)-2-oxo-2-phenylethyl)malonate (**4da**): Yellow solid; yield 95% (91.9 mg); mp = 153– 154 °C; $[\alpha]_D^{25} = -92.2$ (c 1.0, CH₂Cl₂); 79% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/ min, 254 nm; $t_{major} = 17.5$ min, $t_{minor} = 19.6$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.63 (s, 1H), 7.85 (dd, J = 7.0, 4.0 Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.25–7.15 (m, 8H), 7.03 (t, J = 7.5 Hz, 1H), 5.81 (d, J = 11.0 Hz, 1H), 4.70 (dd, J = 11.0, 4.0 Hz, 1H), 4.38–4.27 (m, 2H), 4.27–4.14 (m, 2H), 4.07–3.93 (m, 2H), 1.22 (t, J = 7.0 Hz, 3H), 0.96 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.9, 167.9, 167.8, 140.3, 136.4, 135.5, 133.4, 128.8, 128.7, 128.5, 128.3, 127.1, 125.9, 122.4, 119.5, 119.4, 113.5, 110.9, 62.0, 61.7, 55.1, 44.1, 29.7, 13.8, 13.6; HRMS m/z (ESI+) calcd for C₃₀H₃₀NO₅ ([M + H]⁺) 484.2118, found 484.2124.

(S)-Diethyl 2-(2-Oxo-2-phenyl-1-(3-phenyl-1H-indol-2-yl)ethyl)malonate (**4ea**): Yellow solid; yield 99% (93.0 mg); mp = 154–155 °C; $[\alpha]_D^{25} = -198.6$ (c 1.0, CH₂Cl₂); 88% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/ min, 254 nm; $t_{major} = 22.2$ min, $t_{minor} = 24.4$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.56 (s, 1H), 7.67 (dd, J = 8.0, 1.0 Hz, 2H), 7.57– 7.52 (m, 3H), 7.51–7.48 (m, 2H), 7.47–7.43 (m, 2H), 7.35 (d, J = 8.0Hz, 1H), 7.24–7.18 (m, 3H), 7.09–7.05 (m, 1H), 5.81 (d, J = 11.0Hz, 1H), 4.74 (d, J = 11.0 Hz, 1H), 4.25–4.13 (m, 2H), 4.12–3.92 (m, 2H), 1.19 (t, J = 7.0 Hz, 3H), 0.93 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.2, 167.9, 167.9, 136.4, 135.2, 134.2, 133.5, 129.8, 128.9, 128.9, 128.4, 127.7, 126.9, 126.3, 122.9, 120.1, 119.6, 118.7, 111.0, 62.1, 61.8, 54.5, 43.7, 13.9, 13.6; HRMS *m*/z (ESI+) calcd for C₂₉H₂₈NO₅ ([M + H]⁺) 470.1962, found 470.1964.

(*S*)-Diethyl 2-(1-(5-Methoxy-3-methyl-1H-indol-2-yl)-2-oxo-2phenylethyl)malonate (**4fa**): Yellow solid; yield 99% (86.6 mg); mp = 127–128 °C; $[\alpha]_D^{25} = -174.4$ (*c* 1.0, CH₂Cl₂); 84% ee [Lux Su Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/ 20, 1.0 mL/min, 254 nm; $t_{minor} = 6.9$ min, $t_{major} = 9.6$ min]; ¹H NMR (S00 MHz, CDCl₃) δ 8.04–8.01 (m, 2H), 7.97 (s, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.14 (d, *J* = 8.5 Hz, 1H), 6.90 (d, *J* = 2.0 Hz, 1H), 6.80 (dd, *J* = 9.0, 2.5 Hz, 1H), 5.67 (d, *J* = 11.5 Hz, 1H), 4.54 (d, *J* = 11.5 Hz, 1H), 4.23–4.13 (m, 2H), 4.01–3.93 (m, 2H), 3.84 (s, 3H), 2.35 (s, 3H), 1.21 (t, *J* = 7.0 Hz, 3H), 0.93 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.4, 167.9, 167.8, 153.9, 135.8, 133.6, 131.5, 129.2, 128.7, 128.7, 126.8, 112.5, 111.6, 110.5, 100.8, 62.0, 61.6, 55.9, 54.7, 44.4, 13.9, 13.6, 8.7; HRMS *m*/z (ESI+) calcd for C₂₅H₂₈NO₆ ([M + H]⁺) 438.1911, found 438.1914.

(S)-Diethyl 2-(1-(6-Chloro-3-methyl-1H-indol-2-yl)-2-oxo-2phenylethyl)malonate (**4ga**): Yellow solid; yield 98% (86.6 mg); mp = 130–131 °C; $[\alpha]_D^{25} = -111.4$ (*c* 1.0, CH₂Cl₂); 82% ee [Lux Su Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/ 20, 1.0 mL/min, 254 nm; $t_{minor} = 5.2 min$, $t_{major} = 7.3 min$]; ¹H NMR (S00 MHz, CDCl₃) δ 8.18 (s, 1H), 8.04–8.01 (m, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 1H), 7.24 (d, *J* = 1.5 Hz, 1H), 7.02 (dd, *J* = 8.5, 2.0 Hz, 1H), 5.66 (d, *J* = 11.5 Hz, 1H), 4.53 (d, *J* = 11.5 Hz, 1H), 4.22–4.13 (m, 2H), 4.03–3.91 (m, 2H), 2.35 (s, 3H), 1.21 (t, *J* = 7.0 Hz, 3H), 0.92 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.4, 167.8, 167.7, 135.6, 135.8, 133.7, 128.8, 128.7, 128.5, 127.5, 120.1, 119.6, 111.0, 110.8, 62.1, 61.7, 54.7, 44.2, 13.9, 13.7, 8.5; HRMS *m*/*z* (ESI+) calcd for C₂₄H₂₅ClNO₅ ([M + H]⁺) 442.1416, found 442.1421.

(S)-Diethyl 2-(1-(3,7-Dimethyl-1H-indol-2-yl)-2-oxo-2phenylethyl)malonate (**4ha**): Yellow solid; yield 99% (83.5 mg); mp = 140–141 °C; $[\alpha]_D^{25} = -158.2$ (*c* 1.0, CH₂Cl₂); 86% ee [Lux Su Cellulose-2 column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 80/ 20, 1.0 mL/min, 254 nm; $t_{minor} = 4.5$ min, $t_{major} = 5.6$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.05–8.02 (m, 2H), 7.93 (s, 1H), 7.55–7.52 (m, 1H), 7.45–7.41 (m, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.00–6.93 (m, 2H), 5.70 (d, J = 11.0 Hz, 1H), 4.58 (d, J = 11.0 Hz, 1H), 4.23–4.15 (m, 2H), 4.00–3.93 (m, 2H), 2.43 (s, 3H), 2.38 (s, 3H), 1.22 (t, J = 7.0 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H);¹³C NMR (125 MHz, CDCl₃) δ 197.7, 167.9, 167.7, 135.9, 135.8, 133.6, 128.7, 128.5, 125.8, 123.1, 120.0, 119.5, 116.4, 111.4, 62.0, 61.7, 54.7, 44.3, 16.5, 13.9, 13.6, 8.8; HRMS m/z (ESI+) calcd for C₂₅H₂₈NO₅ ([M + H]⁺) 422.1962, found 422.1962.

(*R*)-3-Methyl-2-(2-nitro-1-phenylethyl)-1H-indole (**6aa**): Yellow solid; yield 97% (108.8 mg); mp = 144–146 °C; $[\alpha]_D^{25} = -84.5$ (c 1.0, CH₂Cl₂); 92% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{minor} = 7.6$ min, $t_{major} = 9.3$ min]; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (s, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.0 Hz, 2H), 7.37–7.30 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.19 (td, *J* = 1.0, 2.0 Hz, 1H), 7.14 (t, *J* = 7.0 Hz, 1H), 5.27 (t, *J* = 8.0 Hz, 1H), 5.09 (dd, *J* = 8.5, 13.0 Hz, 1H), 4.96 (dd, *J* = 8.0, 13.0 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.0, 135.8, 130.6, 129.4, 129.1, 128.1, 127.3, 122.3, 119.7, 118.8, 110.8, 109.5, 77.6, 41.1, 8.6; HRMS *m*/*z* (ESI+) calcd for C₁₇H₁₇N₂O₂ ([M + H]⁺) 281.1285, found 281.1290.

(*R*)-3-*Methyl*-2-(2-*nitro*-1-(*p*-tolyl)*ethyl*)-1*H*-*indole* (**6ab**): Yellow solid; yield 97% (114.2 mg); mp = 94–97 °C; $[\alpha]_D^{25} = -74.1$ (*c* 1.0, CH₂Cl₂); 93% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{minor} = 6.9$ min, $t_{major} = 7.8$ min]; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (s, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.25–7.19 (m, 5H), 7.17 (td, *J* = 1.0, 7.0 Hz, 1H), 7.12 (td, *J* = 1.0, 8.0 Hz, 1H), 5.23 (t, *J* = 8.0 Hz, 1H), 5.07 (dd, *J* = 8.0, 12.5 Hz, 1H), 4.95 (dd, *J* = 7.5, 13.0 Hz, 1H), 2.37 (s, 3H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.9, 135.7, 133.9, 130.8, 130.1, 129.2, 127.2, 122.3, 119.6, 118.7, 110.8, 109.3, 77.8, 40.8, 21.1, 8.6; HRMS *m*/*z* (ESI+) calcd for C₁₈H₁₉N₂O₂ ([M + H]⁺) 295.1441, found 295.1446.

(*R*)-2-(1-(4-Methoxyphenyl)-2-nitroethyl)-3-methyl-1H-indole (**6ac**): Yellow solid; yield 99% (112.9 mg); mp = 70–72 °C; $[\alpha]_D^{-25} = -64.5$ (*c* 1.0, CH₂Cl₂); 90% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{minor} = 10.1$ min, $t_{major} = 13.1$ min]; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.28–7.17 (m, 5H), 6.93 (dt, *J* = 3.5, 10.0 Hz, 2H), 5.22 (t, *J* = 8.0 Hz, 1H), 5.00 (dd, *J* = 8.0, 12.5 Hz, 1H), 4.90 (dd, *J* = 8.0, 13.0 Hz, 1H), 3.83 (s, 3H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.1, 135.7, 131.0, 129.1, 129.0, 128.4, 122.1, 119.5, 118.6, 114.6, 110.8, 109.0, 77.7, 55.2, 40.4, 8.5; HRMS *m*/*z* (ESI+) calcd for C₁₈H₁₉N₂O₃ ([M + H]⁺) 311.1390, found 311.1395.

(*R*)-2-(1-(4-Chlorophenyl)-2-nitroethyl)-3-methyl-1H-indole (**6ad**): Yellow solid; yield 95% (119.6 mg); mp = 85–88 °C; $[\alpha]_D^{25} = -53.3$ (*c* 1.0, CH₂Cl₂); 93% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{minor} = 7.4$ min, $t_{major} = 8.8$ min]; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.37 (dt, *J* = 2.5, 9.0 Hz, 2H), 7.27– 7.22 (m, 3H), 7.20 (td, *J* = 1.0, 7.0 Hz, 1H), 7.14 (td, *J* = 1.5, 8.0 Hz, 1H), 5.24 (t, *J* = 8.0 Hz, 1H), 5.06 (dd, *J* = 8.0, 13.0 Hz, 1H), 4.95 (dd, *J* = 7.0, 13.0 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.8, 135.6, 134.1, 130.0, 129.6, 129.1, 128.7, 122.6, 119.8, 118.8, 110.9, 109.8, 77.5, 40.6, 8.7; HRMS *m*/*z* (ESI+) calcd for C₁₇H₁₆ClN₂O₂ ([M + H]⁺) 315.0895, found 315.0892.

(*R*)-2-(1-(4-Bromophenyl)-2-nitroethyl)-3-methyl-1H-indole (*6ae*): Yellow solid; yield 99% (142.2 mg); mp = 109–110 °C; $[\alpha]_D^{25}$ = -31.0 (*c* 1.0, CH₂Cl₂); 91% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; t_{minor} = 7.7 min, t_{major} = 9.4 min]; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (s, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.54–7.49 (m, 2H), 7.28–7.25 (m, 1H), 7.21–7.12 (m, 4H), 5.21 (t, *J* = 8.0 Hz, 1H), 5.05 (dd, *J* = 13.0, 8.0 Hz, 1H), 4.95 (dd, *J* = 13.0, 7.5 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.2, 135.9, 132.5, 129.9, 129.1, 129.0, 122.6, 122.1, 119.8, 118.8, 110.8, 109.8, 77.4, 40.7, 8.6; HRMS *m/z* (ESI+) calcd for C17H16BrN2O2([M + H]⁺) 359.0390, found 359.0379.

(*R*)-2-(1-(3-Methoxyphenyl)-2-nitroethyl)-3-methyl-1H-indole (**6af**): Yellow solid; yield 97% (120.4 mg); mp = 108–110 °C; $[\alpha]_D^{25}$ = -81.0 (*c* 1.0, CH₂Cl₂); 93% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; t_{minor} = 9.2 min, t_{major} = 10.5 min]; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.18 (t, *J* = 7.0 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.88 (dd, *J* = 2.5, 8.5 Hz, 1H), 6.85 (s, 1H), 5.24 (t, *J* = 8.0 Hz, 1H), 5.07 (dd, *J* = 8.5, 13.0 Hz, 1H), 4.93 (dd, *J* = 7.5, 13.0 Hz, 1H), 3.81 (s, 3H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.3, 138.6, 135.7, 130.5, 130.4, 129.1, 122.3, 119.6, 119.3, 18.8, 113.8, 113.0, 110.8, 109.4, 77.5, 55.3, 41.1, 8.6; HRMS *m/z* (ESI +) calcd for C₁₈H₁₉N₂O₃ ([M + H]⁺) 311.1390, found 311.1394.

(*R*)-2-(1-(2-*Methoxyphenyl*)-2-*nitroethyl*)-3-*methyl*-1*H*-*indole* (*6ag*): Yellow solid; yield 99% (122.9 mg); mp = 135–136 °C; $[\alpha]_D^{25}$ = -66.0 (*c* 1.0, CH₂Cl₂); 91% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; t_{minor} = 11.7 min, t_{major} = 12.6 min]; ¹H NMR (500 MHz, CDCl₃) δ 8.41(s, 1H), 7.54(d, *J* = 7.5 Hz, 1H), 7.33–7.28 (m, 2H), 7.24 (dd, *J* = 2.0, 7.5 Hz, 1H), 7.17 (td, *J* = 1.5, 7.0 Hz, 1H), 7.11 (td, *J* = 1.0, 8.0 Hz, 1H), 6.99–6.95 (m, 2H), 5.36 (t, *J* = 7.5 Hz, 1H), 5.19 (dd, *J* = 7.5, 12.5 Hz, 1H), 5.05 (dd, *J* = 8.0, 13.0 Hz, 1H), 4.00 (s, 3H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.6, 135.4, 131.1, 129.6, 129.2, 108.7, 125.4, 121.9, 121.4, 119.2, 118.5, 111.6, 110.6, 108.9, 77.0, 55.7, 38.5, 8.4; HRMS *m*/*z* (ESI+) calcd for C₁₈H₁₉N₂O₃ ([M + H]⁺) 311.1390, found 311.1398.

(*R*)-2-(1-(3,4-Dimethoxyphenyl)-2-nitroethyl)-3-methyl-1H-indole (**6ah**): Yellow solid; yield 99% (134.8 mg); mp = 102–104 °C; $[\alpha]_D^{25}$ = -68.2 (*c* 1.0, CH₂Cl₂); 92% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; t_{minor} = 13.1 min, t_{major} = 15.4 min]; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.18 (td, *J* = 1.0, 7.0 Hz, 1H), 7.13 (td, *J* = 1.0, 7.5 Hz, 1H), 6.90 (t, *J* = 1.0 Hz, 2H), 6.78 (s, 1H), 5.22 (dd, *J* = 2.0, 8.5 Hz, 1H), 5.06 (dd, *J* = 9.0, 13.0 Hz, 1H), 4.93 (dd, *J* = 7.0, 13.0 Hz, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.7, 148.9, 135.7, 130.8, 129.4, 129.2, 122.2, 119.6, 118.8, 118.7, 111.8, 111.4, 110.8, 109.0, 77.7, 56.0, 55.9, 40.9, 8.6; HRMS *m*/*z* (ESI+) calcd for C₁₉H₂₁N₂O₄ ([M + H]⁺) 341.1496, found 341.1485.

(*R*)-3-*Methyl*-2-(1-(*naphthalen*-1-*yl*)-2-*nitroethyl*)-1*H*-*indole* (*6ai*): Yellow solid; yield 98% (129.5 mg); mp = 56–59 °C; $[\alpha]_D^{25} = -45.2$ (*c* 1.0, CH₂Cl₂); 91% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; *t*_{minor} = 8.5 min, *t*_{major} = 10.5 min]; ¹H NMR (500 MHz, CDCl₃) δ 8.03–8.01 (m, 1H), 7.91–7.89 (m, 2H), 7.58–7.49 (m, 5H), 7.45 (s, 1H), 7.16–7.09 (m, 3H), 6.05 (t, *J* = 8.0 Hz, 1H), 5.25 (dd, *J* = 8.5, 13.0 Hz, 1H), 5.05 (dd, *J* = 7.5, 13.0 Hz, 1H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.7, 134.3, 132.6, 131.3, 130.4, 129.2, 129.16, 129.08, 127.2, 126.4, 125.3, 122.9, 122.8, 122.3, 119.6, 118.8, 110.8, 109.1, 77.2, 37.3, 8.7; HRMS *m/z* (ESI+) calcd for C₂₁H₁₉N₂O₂ ([M + H]⁺) 331.1441, found 331.1443.

(*R*)-3-*Methyl*-2-(2-*nitro*-1-(*thiophen*-2-*yl*)*ethyl*)-1*H*-*indole* (*6aj*): Yellow solid; yield 95% (108.8 mg); mp = 86–88 °C; $[\alpha]_D^{25} = -97.5$ (*c* 1.0, CH₂Cl₂); 92% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{\text{minor}} = 8.5 \text{ min}, t_{\text{major}} = 11.2 \text{ min}];$ ¹H NMR (500 MHz, CDCl₃) δ 7.88(s, 1H), 7.62(d, *J* = 8.0 Hz, 1H), 7.31–7.29 (m, 2H), 7.25 (td, *J* = 1.5, 7.0 Hz, 1H), 7.20 (td, *J* = 1.5, 8.0 Hz, 1H), 7.03 (dd, *J* = 3.5, 5.0 Hz, 1H), 7.00 (dt, *J* = 1.0, 3.0 Hz, 1H), 5.50 (t, *J* = 7.5 Hz, 1H), 5.03 (dd, *J* = 8.0, 13.0 Hz, 1H), 4.90 (dd, *J* = 7.5, 13.0 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.1, 135.7, 129.9, 128.9, 127.2, 125.4, 125.0, 122.5, 119.6, 118.9, 110.9, 109.5, 78.2, 36.8, 8.5; HRMS *m*/*z* (ESI+) calcd for C₁₅H₁₅N₂O₂S ([M + H]⁺) 287.0849, found 287.0851.

(*R*)-3-Methyl-2-(1-nitro-4-phenylbut-3-en-2-yl)-1H-indole (**6ak**): Yellow solid; yield 72% (88.2 mg); mp = 69–71 °C; $[\alpha]_D^{25} =$ -38.3 (*c* 1.0, CH₂Cl₂); 90% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; *t*_{minor} = 7.6 min, *t*_{major} = 10.4 min]; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.58 (d, *J* = 7.0 Hz, 1H), 7.39–7.28 (m, 6H), 7.22 (td, *J* = 1.0, 7.0 Hz, 1H), 7.17 (td, *J* = 1.0, 7.5 Hz, 1H), 6.57 (dd, *J* = 0.5, 16 Hz, 1H), 6.38 (dd, *J* = 6.0, 16.5 Hz, 1H), 4.85 (dd, *J* = 10.5, 14.5 Hz, 1H), 4.78–4.73 (m, 2H), 2.37(s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.0, 135.8, 133.5, 129.7, 129.2, 128.7, 128.3, 126.5, 124.5, 122.4, 119.7, 118.7, 110.8, 109.6, 78.0, 38.9, 8.6; HRMS *m*/*z* (ESI+) calcd for C₁₉H₁₉N₂O₂ ([M + H]⁺) 307.1441, found 307.1447.

(*R*)-3-*Ethyl*-2-(2-*nitro*-1-*phenylethyl*)-1*H*-*indole* (*6ba*): Yellow solid; yield 96% (113.0 mg); mp = 113–115 °C; $[\alpha]_D^{25} = -122.3$ (*c* 1.0, CH₂Cl₂); 94% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{minor} = 6.7 \text{ min}, t_{major} = 8.4 \text{ min}$]; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (s, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.0 Hz, 2H), 7.36–7.26 (m, 4H), 7.19 (t, *J* = 2.0 Hz, 1H), 7.14 (t, *J* = 2.5 Hz, 1H), 5.28 (t, *J* = 8.0 Hz, 1H), 5.12 (dd, *J* = 8.5, 13.0 Hz, 1H), 4.95 (dd, *J* = 7.5, 12.5 Hz, 1H), 2.86 (q, *J* = 7.5 Hz, 2H), 1.30 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.2, 136.1, 130.3, 129.4, 128.14, 128.06, 127.2, 122.3, 119.6, 119.1, 116.4, 110.9, 77.9, 40.9, 17.5, 15.6; HRMS *m*/z (ESI+) calcd for C₁₈H₁₉N₂O₂ ([M + H]⁺) 295.1441, found 295.1448.

(*R*)-2-(2-*Nitro*-1-*phenylethyl*)-3-*phenyl*-1*H*-*indole* (*6ea*): Yellow solid; yield 86% (117.8 mg); mp = 139–140 °C; $[\alpha]_D^{25} = -91.0$ (*c* 1.0, CH₂Cl₂); 96% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{minor} = 6.8$ min, $t_{major} = 9.5$ min]; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.53–7.48 (m, 4H), 7.43–7.40 (m, 3H), 7.37–7.31 (m, 4H), 7.24 (t, *J* = 7.0 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 5.01 (dd, *J* = 8.5, 13.5 Hz, 1H), 4.91 (dd, *J* = 7.0, 13.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.1, 135.6, 134.0, 130.9, 129.8, 129.4, 128.7, 128.2, 128.0, 127.4, 127.1, 122.8, 120.5, 119.6, 116.9, 111.0, 77.7, 41.2; HRMS *m/z* (ESI+) calcd for C₂₂H₁₉N₂O₂ ([M + H]⁺) 343.1441, found 343.1443.

(*R*)-5-*Methoxy*-3-*methyl*-2-(2-*nitro*-1-*phenylethyl*)-1*H*-*indole* (*6fa*): Yellow solid; yield 92% (114.2 mg); mp = 178–180 °C; $[\alpha]_D^{25}$ = -95.3 (*c* 1.0, CH₂Cl₂); 91% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; t_{minor} = 10.2 min, t_{major} = 11.8 min]; ¹H NMR (500 MHz, CDCl₃) δ 7.52 (s, 1H), 7.42–7.39 (m, 2H), 7.36–7.30 (m, 3H), 7.14 (d, *J* = 9.0 Hz, 1H), 6.98 (d, *J* = 2.5 Hz, 1H), 6.83 (dd, *J* = 2.5, 8.5 Hz, 1H), 5.24 (t, *J* = 8.0 Hz, 1H), 5.08 (dd, *J* = 8.0, 13.0 Hz, 1H), 4.96 (dd, *J* = 8.0, 13.0 Hz, 1H), 3.87 (s, 3H), 2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.2, 137.0, 131.5, 130.9, 129.5, 129.4, 128.1, 127.3, 112.4, 111.6, 109.2, 100.7, 77.6, 56.0, 41.2, 8.7; HRMS *m*/*z* (ESI+) calcd for C₁₈H₁₉N₂O₃ ([M + H]⁺) 311.1390, found 311.1394.

(*R*)-3,7-Dimethyl-2-(2-nitro-1-phenylethyl)-1H-indole (**6ha**): Yellow solid; yield 99% (116.5 mg); mp = 108–110 °C; $[\alpha]_D^{25} = -49.8$ (*c* 1.0, CH₂Cl₂); 95% ee [Daicel Chiralcel AS-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{minor} = 12.3 \text{ min}, t_{major} = 14.4 \text{ min}]; ¹H NMR (500 MHz, CDCl₃) <math>\delta$ 7.54 (*s*, 1H), 7.43–7.39 (m, 3H), 7.36–7.31 (m, 3H), 7.07 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 7.0 Hz, 1H), 5.28 (t, *J* = 8.0 Hz, 1H), 5.13 (dd, *J* = 8.0, 13.0 Hz, 1H), 5.01 (dd, *J* = 8.0, 13.0 Hz, 1H), 2.41 (*s*, 3H), 2.36 (*s*, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.2, 135.4, 129.4, 139.4, 128.1, 127.3, 127.2, 123.0, 122.9, 120.0, 116.5, 110.2, 77.8, 41.2, 16.5, 8.8; HRMS *m*/*z* (ESI+) calcd for C₁₈H₁₉N₂O₂ ([M + H]⁺) 295.1441, found 295.1445.

(*R*)-6-Fluoro-3-methyl-2-(2-nitro-1-phenylethyl)-1H-indole (**6ia**): Yellow solid; yield 97% (115.7 mg); mp = 142–144 °C; $[\alpha]_D^{25} = -83.2$ (*c* 1.0, CH₂Cl₂); 92% ee [Daicel Chiralcel AD-H column (25 cm × 0.46 cm i.d.), *n*-hexane/*i*-PrOH = 85/15, 1.0 mL/min, 254 nm; $t_{minor} = 7.2 \text{ min}, t_{major} = 8.4 \text{ min}]$; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 7.45–7.40 (m, 3H), 7.35 (t, *J* = 7.0 Hz, 1H), 7.31 (d, *J* = 7.0 Hz, 2H), 6.92 (td, *J* = 2.5, 9.5 Hz, 1H), 6.91–6.86 (m, 1H), 5.23 (t, *J* = 8.0 Hz, 1H), 5.09 (dd, *J* = 8.0, 13.0 Hz, 1H), 4.97 (dd, *J* = 8.0, 12.5 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.1(d, *J* = 237.5 Hz), 136.9, 135.7 (d, *J* = 12.5 Hz), 130.8 (d, *J* = 37.5 Hz), 129.5, 128.2, 127.2, 125.7, 119.5 (d, *J* = 10.0 Hz), 109.6, 108.3 (d, *J* = 25 Hz), 97.3 (d, *J* = 25 Hz), 77.6, 41.1, 8.6; HRMS *m*/z (ESI+) calcd for C₁₇H₁₆FN₂O₂ ([M + H]⁺) 299.1190, found 299.1190.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00123.

X-ray data for 4ab (CIF)

X-ray data for 6ae (CIF)

Full experimental and characterization data, including ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR for all new compounds, and chiral HPLC spectra for the products (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: yxjia@zjut.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for the generous financial support by the National Natural Science foundation of China (Nos. 21372202 and 21522207), the Program for New Century Excellent Talents in University (NCET-12-1086), and the Natural Science foundation of Zhejiang Province (LR14B020001).

REFERENCES

(1) (a) Catalytic Asymmetric Friedel-Crafts Alkylations; Bandini, M., Umani-Ronchi, A., Eds.; Wiley-VCH: Weinheim, Germany, 2009. For selected reviews, see: (b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550. (c) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903. (d) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190. (e) Terrasson, V.; de Figueiredo, R. M.; Campagne, J. M. Eur. J. Org. Chem. 2010, 2010, 2635.

(2) (a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.
(b) Sundberg, R. J. In The Chemistry of Indoles; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Academic Press: New York, 1996.
(c) Bonjoch, J.; Solé, D. Chem. Rev. 2000, 100, 3455. (d) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
(e) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.

(3) For selected examples of the enantioselective Friedel-Crafts C3alkylation reactions of indoles, see: (a) Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 163. (b) Paras, N. A.; Macmillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370. (c) Zhuang, W.; Gathergood, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2001, 66, 1009. (d) Török, B.; Abid, M.; London, G.; Esquibel, J.; Török, M.; Mhadgut, S. C.; Yan, P.; Prakash, G. K. S. Angew. Chem., Int. Ed. 2005, 44, 3086. (e) Xu, Q.-L.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Org. Lett. 2013, 15, 5909. (f) Saha, S.; Alamsetti, S. K.; Schneider, C. Chem. Commun. 2015, 51, 1461. (g) Wu, L.; Liu, R.-R.; Zhang, G.-Q.; Wang, D.-J.; Wu, H.; Gao, J.-R.; Jia, Y.-X. Adv. Synth. Catal. 2015, 357, 709.

(4) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Chem. Soc. Rev. 2010, 39, 4449.

(5) For selected examples of asymmetric Pictet-Spengler reactions, see: (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558. (b) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086. (c) Wanner, M. J.; van der Haas, R. N. S.; de Cuba, K. R.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2007, 46, 7485. (d) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. (e) Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796. (f) Cai, Q.; Liang, X.-W.; Wang, S.-G.; Zhang, J.-W.; Zhang, X.; You, S.-L. Org. Lett. 2012, 14, 5022. (g) Gregory, A. W.; Jakubec, P.; Turner, P.; Dixon, D. J. Org. Lett. 2013, 15, 4330.

(6) (a) Kang, Q.; Zheng, X.-J.; You, S.-L. Chem. - Eur. J. 2008, 14, 3539. (b) Sheng, Y.-F.; Li, G.-Q.; Kang, Q.; Zhang, A.-J.; You, S.-L. Chem. - Eur. J. 2009, 15, 3351. (c) Hong, L.; Sun, W.-S.; Liu, C.-X.; Wang, L.; Wong, K.; Wang, R. Chem. - Eur. J. 2009, 15, 11105. (d) Hong, L.; Liu, C.-X.; Sun, W.-S.; Wang, L.; Wong, K.; Wang, R. Org. Lett. 2009, 11, 2177. (e) Wang, T.; Zhang, G.-W.; Teng, Y.-O.; Nie, J.; Zheng, Y.; Ma, J.-A. Adv. Synth. Catal. 2010, 352, 2773. (f) Wu

H.; Liu, R.-R.; Shen, C.; Zhang, M.-D.; Gao, J.-R.; Jia, Y.-X. Org. Chem. Front. 2015, 2, 124.

(7) (a) Cheng, H.-G.; Lu, L.-Q.; Wang, T.; Yang, Q.-Q.; Liu, X.-P.;
Li, Y.; Deng, Q.-H.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed.
2013, 52, 3250. (b) Zhang, Y.-L.; Liu, X.-H.; Zhao, X.-H.; Zhang, J.-L.;
Zhou, L.; Lin, L.-L.; Feng, X.-M. Chem. Commun. 2013, 49, 11311.
(c) Ma, H.-L.; Li, J.-Q.; Sun, L.; Hou, X.-H.; Zhang, Z.-H.; Fu, B.
Tetrahedron 2015, 71, 3625. (d) Bi, B.; Lou, Q.-X.; Ding, Y.-Y.; Chen,
S.-W.; Zhang, S.-S.; Hu, W.-H.; Zhao, J.-L. Org. Lett. 2015, 17, 540.
(8) For the latest examples of the asymmetric Friedel–Crafts

(c) 161 min mini terminipite of an asymmetric inferred change is reactions of nitroalkenes, see: (a) Gao, J.-R.; Wu, H.; Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X. J. Am. Chem. Soc. 2013, 135, 2983 and references cited therein. (b) Arai, T.; Yamamoto, Y.; Awata, A.; Kamiya, K.; Ishibashi, M.; Arai, M. A. Angew. Chem., Int. Ed. 2013, 52, 2486. (c) Chen, L.-A.; Tang, X.; Xi, J.; Xu, W.; Gong, L.; Meggers, E. Angew. Chem., Int. Ed. 2013, 52, 14021. (d) Weng, J.-Q.; Deng, Q.-M.; Wu, L.; Xu, K.; Wu, H.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Org. Lett. 2014, 16, 776. (e) Mori, K.; Wakazawa, M.; Akiyama, T. Chem. Sci. 2014, 5, 1799.

(9) (a) Lu, S.-F.; Du, D.-M.; Xu, J.-X. Org. Lett. 2006, 8, 2115.
(b) Liu, H.; Xu, J.; Du, D.-M. Org. Lett. 2007, 9, 4725.

(10) Qin, B.; Liu, X.-H.; Shi, J.; Zheng, K.; Zhao, H.-T.; Feng, X.-M. J. Org. Chem. 2007, 72, 2374.

(11) Liu, Q.; Rovis, T. Org. Lett. 2009, 11, 2856.